Sign In

  • Forgot your password?
  • Need a new account?

Register


Multimodal Microscope | SIMTRUM Photonics Store

Multimodal Microscope

Simtrum's Multimodal Microscopy Platform is a highly integrated, flexible, and modular fluorescence dynamics testing system designed for comprehensive characterization of all classes of luminescent materials. It supports conventional fluorescence, phosphorescence, and afterglow imaging.


Built on an open, modular optical architecture with high-precision mechanical interfaces, the platform enables seamless integration of:Multi-source excitation (lasers and LEDs),Multi-path illumination (upright, side, inverted),Synchronized acquisition of image, spectral, and lifetime data.


By swapping functional modules, users can switch between excitation modes in seconds—enabling rapid adaptation to diverse sample types including thin films, solutions, cells, tissues, microfluidic chips, and single nanoparticles. This platform supports the full research workflow: material discovery → mechanism elucidation → device validation.

Features

  • Multi-Excitation Compatibility:

Supports independent or synchronized operation of laser and LED sources across 350–1550 nm. Specifically optimized for Photon Avalanche (PA) materials requiring stringent excitation conditions. Includes a high-stability 1064 nm laser (power stability ≤ ±0.5% RMS) with precise power density control (0.1–500 kW/cm²) for PA threshold crossing and nonlinear response measurements.

  • Flexible Multi-Path Illumination:

Switches between upright, side, and inverted excitation geometries in <2 minutes—without moving the sample or realigning optics. Compatible with slides, cuvettes, Petri dishes, microfluidic chips, and single particles. Ideal for both static characterization and dynamic process monitoring.

  • Multidimensional Signal Synchronization:

Integrates digital imaging, spectral resolution (200–1700 nm), and time-resolved detection (<30 ps time resolution). Simultaneously captures fluorescence intensity, emission peak position, and lifetime dynamics. Achieves <50 nm spatial resolution in single-particle PA super-resolution imaging and supports lifetime measurements from 100 ps to 10 s.

  • Modular Design & Intelligent Software:

Uses standardized cage-based optics and quick-connect interfaces with auto-alignment. The companion software supports automatic background subtraction, multi-peak fitting, multi-exponential lifetime decay modeling, Stokes shift calculation, and one-click generation of standardized PDF/Excel reports—enhancing research efficiency and data reproducibility.

 

Applications

  • Fluorescent Dyes:
    Applications:bio-labeling and cell imaging;Key characteristics: high brightness, low background and long lifetime.

  • Quantum Dots:
    Applications:optical sensors and displays;Key characteristics:size-tunable emission, high quantum yield.
  • Perovskites:
    Applications:solar cells, LEDs;Key characteristics: high optoelectronic efficiency, solution-processable.
  • Upconversion Nanoparticles:
    Applications: deep-tissue imaging, anti-counterfeiting;Key characteristics:NIR excitation, visible emission, low background.
  • TADF Materials:
    Applications: OLED displays, organic semiconductors;Key characteristics:high exciton utilization, low driving voltage.
  • Long-Persistence Phosphors:
    Applications: emergency lighting, safety signs;Key characteristics: long afterglow, no external power needed.
  • 2D Materials:
    Applications: electronics, flexible displays;Key characteristics:excellent electrical/optical properties, atomic thickness.

  • Carbon Dots:
    Applications: biosensing, environmental monitoring;Key characteristics:good water solubility, low toxicity, multifunctional.

Highly Integrated Multimodal Fluorescence Dynamics Testing System – Excitation Light Source Subsystem

Dual-Laser Co-Excitation Module

It provides highly stable continuous-wave or pulsed laser output (power stability ≤ ±0.5% RMS), with wavelength coverage spanning 350–1550 nm, precisely matching the absorption transitions of luminescent centers such as Tm³⁺ and Er³⁺ (e.g., 1064 nm excitation for the ³H₆ → ³H₅ transition).

An integrated motorized polarization control unit enables rapid switching among linear, circular, and elliptical polarization states, fulfilling the requirements for polarization-dependent studies on anisotropic materials.

The dual-channel independent design supports either single-beam or synchronized dual-beam excitation (temporal synchronization accuracy < 1 ns), making it suitable for investigating complex photophysical processes such as upconversion cascades, cross-relaxation, and photon avalanche, thereby offering a quantifiable and reproducible excitation platform for cutting-edge luminescence mechanism research.

Project Parameter
Modulation CW / pulsed (ns–ps) / power sweep / polarization control
Power Range 0.1 mW  500 mW (output), adjustable in ≤0.1% steps
Stability  ±0.5% RMS (PA mode @1064 nm, 100 mW)
Beam Quality  < 1.1, TEM₀₀ Gaussian; real-time beam profiler
Spot Size 50 µm  2 mm (at objective back focal plane), motorized expander
Power Density 0.1  500 kW/cm² (for PA threshold studies)
Polarization Motorized λ/2 + λ/4 waveplates  linear/circular/elliptical
Sync Trigger TTL/USB, delay <1 ns, compatible with TCSPC & cameras
Safety Overload alarm, shutter interlock, status indicator
Special Features PA-specific power sweep protocol (auto-fit I  Pⁿ, n > 500)
Real-time beam profile feedback
Optimized for Tm³: 1064 nm, 980 nm, 1532 nm

 

LED Beam Modulation Module

It employs a high-brightness single-band or multi-band composite LED light source, delivering incoherent excitation across a broad spectral range (365–940 nm) or narrow bands (full width at half maximum, FWHM: 15–40 nm), with low thermal impact, minimal phototoxicity, and high stability (power fluctuation ≤ ±1.0% RMS).

This makes it particularly well-suited for long-term dynamic observation of light-sensitive systems such as live cells, organic fluorescent dyes, and TADF (thermally activated delayed fluorescence) materials. Integrated with an motorized wavelength selection module, the system can switch to the desired excitation band in under 50 ms, effectively suppressing stray light interference.

Its uniform illumination mode significantly reduces the risk of photobleaching and enhances data reproducibility in broadband-response measurements, making it an ideal excitation solution for high-throughput screening, educational experiments, and combined laser-LED research applications.

Project Parameter
Type High-power multi-chip LED array (mono or broadband)
Wavelength 365–940 nm (standard: 365, 405, 470, 525, 625, 730, 850, 940 nm)
Bandwidth 15–40 nm FWHM (narrowband filters <10 nm optional)
Power Up to 500 mW (@470 nm), 0.1% step control
Stability ≤ ±1.0% RMS (after 30-min warm-up)
Modulation CW / pulsed (1 µs–1 s, 0.1 Hz–10 kHz)
Rise/Fall Time <10 µs (for time-gated imaging))
Polarization Random (optional linear polarizer, extinction >100:1)
Sync TTL I/O, jitter <1 µs
Features Wavelength switching <50 ms
Low phototoxicity for long-term live-cell imaging
Dual-mode excitation (e.g., UV-LED + NIR laser)

 

Highly Integrated Multimodal Fluorescence Dynamics Testing System – Sample Excitation Configuration

Mode Technical Specs Typical Applications
Upright Confocal design, NA≥0.75
XY resolution <50 nm (single-particle PA)
Working distance: 0.1–2 mm
Coaxial laser/LED excitation
Single nanoparticles (e.g., NaLuF₄:Tm), thin films,microstructures, surface mapping
Side 90° orthogonal path (minimizes reflection)
- Temp controlled cuvette holder (25–80°C ±0.1°C)
- Magnetic stirrer (0–1500 rpm)
- Adjustable path length (1–10 mm)
Dynamic solutions (ligand exchange, PA threshold scans), 
colloidal stability, time-resolved kinetics
Inverted Long WD objective (≥2 mm, NA  0.6)
Bottom transmission compatible with dishes/chips
NIR-II deep excitation (1064/1532 nm)
Auto-focus tracking (±5 µm)
Live-cell imaging, 3D tissue slices, 
flexible devices, thick-sample PA super-resolution
Side excitation
avoids bottom reflections in liquids—perfect for cuvettes, with optional stirring/sonication for homogeneous excitation.
Upright excitation  
targets planar samples (slides, films, tissue sections) with high-NA confocal optics for <50 nm resolution.
Inverted excitation
delivers light from below—ideal for transparent-bottom containers and adherent biological samples (e.g., culture dishes, glass-bottom plates, microfluidics). High collection efficiency enables long-term, non-invasive observation.

 

Highly Integrated Multimodal Fluorescence Dynamics Testing System – Signal Acquisition Capability

Digital Imaging Module

Equipped with a scientific-grade sCMOS, EMCCD, or high-quantum-efficiency CCD camera (quantum efficiency > 82%, read noise ≤ 1.0 e⁻), the system delivers high sensitivity, low noise, and high frame rates, enabling clear capture of weak luminescence or transient dynamic signals.

It supports advanced imaging functions such as time-lapse acquisition, region-of-interest (ROI) imaging, and high dynamic range (HDR) imaging. A motorized, adjustable emission filter module positioned at the front end effectively suppresses background stray light, significantly enhancing image contrast and signal-to-noise ratio.

Whether for single-particle photoacoustic (PA) imaging (< 50 nm), cellular fluorescence distribution mapping, or large-area luminescence imaging, the system delivers professional-grade visualization results.

Project Parameter
Modes Widefield / Confocal / PA super-resolution (nonlinear deconvolution)
Camera Scientific sCMOS, QE >82% (@600 nm), read noise ≤1.0 e
Resolution 2048 × 2048, pixel size 6.5 µm
Frame Rate Up to 100 fps (full frame); >500 fps in ROI
Spatial Resolution <50 nm (single-particle PA)
Positioning Accuracy ≤0.5 µm (centroid fitting)
Dynamic Range >30,000:1 (16-bit, no saturation)
FOV 50 µm – 1 mm (auto-adapted via objective)
Features Auto particle detection & ROI locking
Multi-channel overlay (blue/red/NIR)
Real-time background subtraction
Time-stamped sync with spectral/lifetime data

 

Spectral Resolution Acquisition Module

Spectral Resolution Acquisition Module
Covering a broad spectral range from 200 to 1700 nm, the module achieves a spectral resolution of better than 0.1 nm in the visible region, enabling precise resolution of fine spectral features such as multi-peak structures, Stokes shifts, and energy-level splitting.

It employs a high-transmission focusing optical path combined with low-loss fiber coupling technology to ensure efficient signal delivery to the spectral analysis unit.

The accompanying intelligent software automatically performs background subtraction, peak identification, multi-peak fitting, intensity normalization, and component deconvolution, and can generate professional reports—complete with spectral curves and key parameters—with a single click. This fully supports applications ranging from basic characterization to in-depth mechanistic studies.

Project Parameter
Range 200–1700 nm (UV to NIR-II)
Resolution ≤ 0.1 nm(@400 nm),≤ 0.5 nm(@1000 nm)
Detectors Back-thinned CCD (200–1100 nm) + InGaAs array (900–1700 nm)
Dynamic Range >10:1
Modes Continuous/step scanning, time-series
Calibration Built-in Hg/Ar lamp for auto wavelength correction
Features Auto nonlinear index fitting (I ∝ Pⁿ, n >500)
Multi-peak Gaussian/Lorentzian fitting
Stokes shift calculation
Automatic identification of Tm³/Er³ peaks (e.g., ¹G→³H @475 nm)

 


Time-resolved detection module

Time-resolved detection module

Based on Time-Correlated Single Photon Counting (TCSPC) technology, the system achieves a time resolution better than 50 ps, enabling precise measurement of dynamic processes across the full timescale—from nanosecond fluorescence decays to second-scale afterglow emissions.

It supports simultaneous acquisition of multidimensional parameters such as rise time, decay lifetime, and delayed luminescence intensity, offering comprehensive insights into excited-state energy relaxation, charge transfer, or triplet-state evolution mechanisms.

Equipped with highly sensitive detectors—including avalanche photodiodes (APDs), single-photon counting modules (SPCMs), or high-speed photomultiplier tubes (PMTs)—the system delivers high signal-to-noise ratio lifetime curves even under extremely low-concentration or weak-emission conditions. It serves as an essential tool for dynamic studies of advanced luminescent materials such as TADF emitters, phosphors, upconversion systems, and quantum dots.

Project Parameter
Time Resolution <30 ps
Measurement Range 100 ps – 10 s (auto-ranging)
Excitation Sync Ps-pulsed laser (1 MHz – 80 MHz rep rate)
Detectors MCP-PMT (200–900 nm) or NIR SPAD (900–1700 nm)
Fitting Models Mono/bi/tri-exponential, stretched exponential, IRF deconvolution
Features  PA dynamics package: decouples ³F (cycling) and ¹G/³H (emission) lifetimes
 Compatible with Nature 2025 data format (e.g., ³F
 ≈ 95 µs, ³H ≈ 26 µs)
 Auto-output: τ
, τ, A, A, χ²
 Rise time (Tᵣᵢ
ₛₑ) and avalanche buildup kinetics

Highly Integrated Multimodal Fluorescence Dynamics Testing System – System Integration and Control

Multimodal Configuration Module

As the core control unit of the system, it integrates three spatial excitation pathways—upright, side-illumination, and inverted—and supports two types of light sources: laser and LED.

It enables rapid switching among five operational modes: single/dual-laser upright, single/dual-laser side-illumination, LED upright, LED side-illumination, and laser inverted. Through built-in electronically controlled optical-path deflection components—including dichroic mirrors, reflectors, and optical switches—the system dynamically reconfigures both excitation light delivery and emission signal collection.

Users can switch between modes in seconds without any manual optical alignment, significantly enhancing experimental efficiency, data consistency, and operational convenience.

 

Project Parameter
Optical Architecture Open, modular cage system with vertical stacking
Mechanical Interface Dovetail quick-mount + auto-alignment (repeatability  ±2 µm)
Control Full computer control (manual/auto modes)
Software Features
  • Intelligent multimodal workflow engine
  • Built-in PA test templates (power sweep, lifetime, super-res imaging)
  • Auto-report generation (PDF/Excel): includes n, P_th, Tᵣᵢₛₑ, τ, peak position
    Data format compatible with Nature 2025 benchmarks
Data Export .txt / .csv / .spe  compatible with Origin, MATLAB, Python
Switching Speed <2 min for full PA configuration (1064 nm + upright confocal + TCSPC)
Stability <3% signal drift over 8 hours (@1064 nm, 100 mW)
User Management Multi-tier accounts (admin/researcher/student) with audit trail
Remote Access Optional LAN/Wi-Fi for remote monitoring

Multimodal and multipattern

Multimodal Operation Modes

The Multimodal Switching Hub integrates three spatial excitation geometries (upright, side, inverted) and two light sources (laser/LED), supporting five operational modes:

  • Single/dual-laser upright
  • Single/dual-laser side
  • Laser inverted
  • LED upright
  • LED side

Mode switching takes <2 seconds via software or motorized sliders—no manual realignment needed. Factory-calibrated to sub-micron precision; optical loss <3%, pointing stability ≤ ±2 µm.

 

This “plug-and-play” design dramatically improves experimental efficiency and data reproducibility across diverse samples—from solid films and PA nanocrystals to dynamic solutions—and from static imaging to ultrafast time-resolved studies.

Dual-laser co-excitation modulation module

Spectral resolution / time-resolved detection module

Digital imaging module

Multi-functional sample stage (with side excitation) 

 

Inverted sample excitation module

LED beam modulation module

 


Multi-module microscope optical path diagram

 

Front view of a multi-module microscope


Photon Avalanche (PA) Materials

Enables full-parameter characterization of ultra-nonlinear emitters (e.g., NaLuF₄:Tm³⁺ nanocrystals), including:

  • Nonlinear exponent (n > 500)
  • Avalanche threshold (~16 kW/cm²)
  • Single-particle super-resolution imaging (<50 nm)
  • Supports development and mechanistic studies of next-generation PA probes (Nature 2025).

Single-particle NaLuF₄:Tm photon avalanche (PA) imaging with spatial resolution < 5

The nonlinear exponent of NaLuF₄:Tm reaches 281,
significantly outperforming the NaYF₄ host matrix.

The 176 nm nanodisks exhibit an average optical nonlinearity exceeding 500,with highly reproducible performance.

 Super-Resolution Optical Imaging

Leverages extreme nonlinearity of PA materials to achieve <50 nm resolution using a single continuous-wave laser—eliminating the need for complex STED or RESOLFT setups. Ideal for low-phototoxicity, long-term live-cell imaging.

Super-resolution reconstruction (<50 nm) using a single laser beam based on the PA effect

Diffraction-limited image (~300 nm), in stark contrast to the super-resolution result.

Ten-thousand-particle Monte Carlo simulations validate the universality of PA-based super-resolution.

 

Fluorescent Material Optimization & Screening

Combines spectral and lifetime data to rapidly evaluate:

  • Molecular design
  • Doping ratios
  • Core-shell engineering
  • Synthesis protocols
  • Accelerates iteration of high-performance upconversion, TADF, and long-afterglow materials.

Raman peak blueshift >10 cm⁻¹, indicating an increase in phonon energy.

HAADF-STEM and EDS mapping confirm uniform elemental doping.

XRD Rietveld refinement reveals lattice contraction (Δa ≈ −0.5%) due to Lu³⁺ substitution.

 

Fluorescent Probe Development

Validates targeting, sensitivity, and biocompatibility of smart probes for pH, ions, ROS, etc.—especially NIR-II PA probes for dynamic monitoring.



Multicolor PA probes for live-cell NIR-II super-resolution imaging.

Broad-spectrum upconversion emission covers the 450–1700 nm biological window.

Surface ligand engineering significantly influences the PA emission intensity and stability.

 

Photophysical Dynamics Studies

Precisely resolves transient behaviors: fluorescence lifetime, rise/decay times, delayed emission. Reveals microscopic mechanisms like excited-state relaxation, cross-relaxation (CR), and energy migration—providing quantitative inputs for multi-level systems (e.g., Tm³⁺/Er³⁺).

Key rate parameter table: GSA/ESA/CR enabling quantitative modeling.

The ³F₄ metastable level has a lifetime of 95 μs, supporting efficient avalanche cycling.

Host engineering modulates the Tm³⁺ energy level lifetimes to optimize PA dynamics.

 

Nanomaterial Spectral Analysis

Performs single-particle analysis of:

  • Emission peak position
  • FWHM
  • Quantum yield
  • Blinking statistics
  • Enables quality control and batch consistency for quantum dots, perovskites, MOFs/COFs, and PA nanocrystals.

Multipeak emission spectra resolve the luminescence behavior in blue, red, and NIR channels.

XANES confirms Tm is in the +3 oxidation state, with no valence defects.

XPS reveals enhanced local crystal field, leading to improved luminescence efficiency.

 

Interdisciplinary Research & Industrial Testing

Applications span:

  • Life sciences
  • Optoelectronic devices
  • Anti-counterfeiting tags
  • IR displays
  • Chemical sensing
  • High-throughput material screening
  • Bridges lab-scale discovery to industrial production.
  • PA materials in anti-counterfeiting, display, and sensing,Multiplexed bio-detection via multi-channel PA imaging

Comprehensive overview of PA materials applications in anti-counterfeiting, displays, sensing, and beyond.

 

Multichannel PA imaging enables multiplexed biological detection.


We are here for you!

 

 

 

Drop us an email at info@simtrum.com to get the Best Price today.   Want more technical information? Click Here for the professional Customized System/ Solutions.
     

 

Don't have time to search the products one by one? No worries. you can download the full range of SIMTRUM Product Line Cards.

Click it now.

 

Want to stay closer to the Market Dynamics and Technological 

Developments? Just take 5 seconds to Sign In as a member of 

SIMTRUM, we will bring you the most up-to-date news. 

(Sign in button on the top right of the screen).

 



Search Reset
Compare Model Drawings & Specs Availability Reference Price
(USD)

Accessories

Compare Model Drawings & Specs Availability Reference Price
(USD)